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CONTRIBUTIONS

FRAMEWORK DESIGN

Summary and Future Work
§ We demonstrate the applicability and feasibility of SplitVAEs specifically in the context of multi-

stakeholder infrastructure systems by leveraging real world datasets. 
§ We establish the feasibility and superior computational performance of our proposed method in 

various aspects including performance comparison with other approaches, architecture scalability 
and ease of data movement according the above experiments.

§ Overall, SplitVAEs are a compelling alternative that enables scenario generation for SO problems in 
multi- stakeholder-led infrastructure systems without the need to transfer underlying datasets. 

CONCLUSION

We propose a decentralized machine learning (ML) approach that: 
§ Leverages edge-based autoencoders with server-driven variational autoencoder to capture global 

spatiotemporal interdependencies from siloed data.
§ Decomposes global backpropagation steps across edge and server models, enabling the bi-directional 

flow of learning insights without moving raw data.
§ Enables a scalable, real-world implementation to generate scenarios for stochastic optimization 

problems without the need to move data.
§ Handles heterogeneous datasets across diverse areas by comparing the generated scenarios with 

established benchmark methods.

§ Server-level variational autoencoder (Server-VAE): yields latent space embeddings with the help of a 
probabilistic encoder, then uses the mean and variance of the latent embeddings to generate latent 
space representations; finally, the representations are fed to a probabilistic decoder to obtain the 
reconstructions of the raw data.

§ Edge-level autoencoder (Edge-AE): deep neural network (DNN) encoder and decoder models; the 
encoders receive siloed time-series data from each stakeholder to yield low-dimensional embeddings, 
while the decoder reconstructs the input data from these embeddings.

§ Loss functions: two loss functions are used in the training mechanism of our proposed framework.
§ Reconstruction Loss: the binary cross-entropy function is employed to measure the mean 

reconstruction error between predicted values and observed values. 
§ Kullback-Leibler (KL) Loss: the KL loss measures the disparity between the learnt latent space 

embedding and the reference distributions.

RESULTSResearch Objectives
 

MOTIVATION
§ Stochastic planning and optimization (SO) in large-scale, multi-

stakeholder, networked infrastructure systems requires
spatiotemporally interdependent data-driven scenarios  

§ Centralized aggregation of stakeholder data is challenging due
to privacy, computational, and logistical bottlenecks.

§ Spatiotemporal interdependencies are difficult to capture
without centralized data aggregation from all stakeholders. Simple two-stage, linear,  stochastic 

optimization formulation as an example

 

 

§ Benchmark: We compare the SplitVAEs with centralized scenario generation methods, including the 
Gaussian copula and the Central-VAE method. We also employ the t-SNE technique to visualize the 
kernel density distribution of the generated scenarios, transformed into one-dimensional embeddings.

§ Metrics: We employ multiple quantitative evaluation metrics to measure the quality of the generated 
scenarios namely Fréchet inception distance (FID), Energy Score (ES); Root-mean-square Error (RMSE), 
and Continuous Ranked Probability Score (CRPS).

§ Datasets: We primarily evaluated the decentralized scenario generation capability of our proposed 
framework using the USAID, ACES, and ACTIVSg datasets.
§ USAID: the Order Cycle Time information of 85 distributors from 2017 to 2023 are used.
§ ACES: carbon emission profiles for 25 petroleum refineries in Texas for summer seasons in 2017.
§ ACTIVSg: load and renewable data from the 2000 bus transmission system test case for Texas.

§ Hardware Setup: Our experiments are conducted on Pete Supercomputer. 
§ Software Setup: All experiments were conducted OpenMPI distributed memory framework, available as 

mpi4py, in Python. The PyTorch library is used for constructing, training and evaluating the machine 
learning models.

EVALUATION METHODS

Binary cross-entropy as Reconstruction Loss KL Divergence to compare two distributions

Embedding distributions between observed data and generated scenarios by different methods across four case studies

Geographical heatmap illustrating the concentration of carbon emission 
volume profile in Port Arthur, Texas 

Time series analysis of carbon dioxide emissions scenarios 
compared with observed data in Port Arthur, Texas.

Benchmarking evaluation metrics (FID, ES,RMSE, 
CRPS) across four different datasets. 

Handling Dimensional Heterogeneity

Embedding distributions and metrics between observed data and 
generated scenarios by different region decompositions

Time series analysis of scenarios generated in three different region decompositions (20-60-120) compared with observed 
data for ACTIVSg-Load dataset

Effect of local sub-problem sizes on quality of 
generated scenarios

Reduction in Data Movement

Effect of varying latent dimensions of edge device levelSize of data transferred with varying edge-level latent dimension 

COMPUTATIONAL PERSPECTIVES AND BENEFITS 
Planning and Optimization for Nodal Authorities
§ SplitVAEs enable nodal authorities (NA) such as control towers in supply chains, and Independent System Operators (ISOs) in 

power systems to optimize and plan for the entire network without needing to move stakeholder data.
§ Using SplitVAEs as a NA can generate scenarios by using the latent space dimensions learned by the Server-VAE in 

conjunction with the trained Edge-AEs to use for SO problems.
Applicability to a Diverse Case Studies:
§ SplitVAEs performance is nearly identical to that of most centralized training schemes like the Gaussian copula and the 

Central-VAE in respect to evaluation metrics.
§ All methods can capture the underlying data distributions, as indicated by the embedding distribution graphs and the 

spatiotemporal information of the observed data is captured in a high-fidelity fashion.
Handling Dimensional Heterogeneity
§ The SplitVAEs model can handle heterogeneity in embedding dimensions as illustrated by varying the region 

decompositions in ACTIVSg dataset leading to different embedding sizes for each Edge-AE. 
Architecture Scalability
§ SplitVAEs demonstrate an inherent robustness to varying sizes of latent dimensions in the server VAE and the dimensions 

of the edge encoders and decoders.
Reduction in Data Movement
§ SplitVAEs highlight the ability of edge devices to generate compact low dimensional embeddings which is an essential 

consideration for transmission speed in data-rich environments.
§ SplitVAEs enable reduction in data transmission costs and help save on bandwidth and latency associated with streaming.
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SplitVAES - Decentralized scenario generation from siloed data for stochastic 
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Applicability to Diverse Case Studies
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COMPUTATIONAL ARCHITECTURE

Forward Pass (FP): 
§ Edge-AE generates low dimensional embeddings which

are sent to the Server-VAE.
§ The probabilistic encoder 𝑞!(𝑥) yields latent space

representations of the received embeddings.
§ The probabilistic decoder 𝑝"(𝑥|𝑧) generates estimates of

low dimensional embeddings for each edge location.
§ The Edge-AE decoder uses the Server-VAE embedding

estimates to predict reconstruction error of raw data.

Backward Pass (FP): 
§ Edge-AEs receive embedding estimates and compute

prediction error using decoder.
§ The errors on the input layer are distributed back to

the Server-VAE.
§ The received errors are backpropagated through the

VAE to yield errors at the VAE input layer.
§ VAE input errors are distributed to Edge-AEs where

they are backpropagated through the encoder


